

1. Find each requested anti-derivative.

a) $\int x^4 dx$

b) $\int \sqrt[3]{x^2} dx$

c) $\int e^{6x} dx$

d) $\int \frac{5}{x} dx$

2. Find the specific function $f(x)$ which satisfies the following information:

a) $f'(x) = 3x^2 - 8x$ and $f(2) = 3$

b) $f'(x) = \sqrt{6x-2}$ and $f(3) = 1$ (Hint: use substitution)

3. Use the Method of Substitution to find the values of each Integral

a) $\int 4x^2(x^3 - 1)^6 dx$

b) $\int x e^{5x^2 + 7} dx$

4. Solve the differential equation. Find the function satisfying the given information.

a) $\frac{dy}{dx} = 4x - 6$ and $y(2) = 1$

b) $\frac{dy}{dx} = e^{2x} + 3$

5. Estimate the Area under the curve of $f(x) = \frac{1}{9}(x-3)^2 + 4 = \frac{1}{9}x^2 - \frac{2}{3}x + 5$ on the interval $[0,12]$ using $n = 4$ rectangles and Right-hand endpoints. (Hint: a sketch might help) 12pts

6. Given the following information regarding $f(x)$, answer the questions below.

$$\int_1^{10} f(x) dx = 14, \int_{10}^4 f(x) dx = -3, \int_1^7 f(x) dx = 6$$

a) $\int_1^4 f(x) dx$

b) $\int_4^{10} 2f(x) dx$

c) $\int_4^7 f(x) dx$

7. Find the value of each Definite Integral, **NO DECIMALS**

a) $\int_9^{16} \sqrt{x} dx$

b) $\int_{-3}^5 (x^4 - 6x^2 + 7) dx$

c) $\int_2^{10} \frac{3}{x} dx$

d) $\int_{-1}^2 e^{4x} dx$

e) $\int_{-2}^1 \frac{x^2 - 4x}{x^4} dx$

8. Use the Substitution Method to evaluate the Definite Integrals below

a) $\int_0^2 x(x^2 - 1)^5 dx$

b) $\int_{-6}^6 x\sqrt{10-x} dx$

9. Find the following anti-derivatives.

a) $\int (10x^4 + \frac{2}{x^5}) dx$

b) $\int xe^{3x^2} dx$

10. Find the specific function $f(x)$ which satisfies all of the following:

a) $f'(x) = \frac{1}{\sqrt{4x+5}}$ and $f(11) = 2$

b) $f'(x) = x^3 - 4x$ and $f(-6) = 4$

11. Evaluate each of the Definite Integrals. NO DECIMAL ANSWERS.

a) $\int_{-2}^2 (2x^3 - 3x^2) dx$

b) $\int_0^2 36x^2(x^3 + 1)^5 dx$

12. Given $\int_2^9 f(x) dx = 10$, $\int_9^5 f(x) dx = 7$, $\int_5^{13} f(x) dx = 16$, find

a) $\int_2^{13} f(x) dx$

b) $\int_{13}^9 5f(x) dx$

13. Find the Area bounded by $y = x^2$ and $y = 2x + 8$

14. Find the Area bounded by $y = x^3$ and $y = 9x$

15. Ed starts a 401k account at age 27, putting away \$6000 each year. If the account earns 7.2% continuously, how much will be in the account when Ed reaches age: (i) 60 (ii) 65 (iii) 70

16. An investment opportunity is presented, which will provide a continuous income stream worth \$75000 each year for the next 8 years. Assuming an earnings rate of 5% continuously, what is this worth in today's dollars?

17. Marie has built up a retirement account with a total value of \$1,250,000 and wishes to convert it into an annuity that will pay her out over the next 25 years. Assuming an earnings rate of 6.4% continuously, how much will this provide her each year? (Hint: use the PV formula)

18. A PDF is given: $f(x) = \begin{cases} 1/10 & 0 \leq x \leq 10 \\ 0 & elsewhere \end{cases}$

a) Show that this satisfies Principles I and II of a Probability Density Function
 b) Use Principle III to find $P(2 < X < 8)$

19. A PDF is given: $f(x) = \begin{cases} \frac{3(1-x^2)}{4} & -1 \leq x \leq 1 \\ 0 & elsewhere \end{cases}$

a) Show that this satisfies Principles I and II of a Probability Density Function
 b) Use Principle III to find $P(-1/2 < X < 1/4)$

20. Find each Improper Integral's value, if it Converges, or show why it Diverges

a) $\int_2^{\infty} \frac{3}{x^5} dx$ b) $\int_1^{\infty} \frac{3}{\sqrt[3]{x}} dx$ c) $\int_2^{\infty} \frac{3}{x} dx$ d) $\int_1^{\infty} \frac{1}{2} e^{-t/2} dt$